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ABSTRACT

A set of 14 scalar, nonprobabilistic measures—some old, some new—is examined in the rare-event situation.
The set includes measures of accuracy, association, discrimination, bias, and skill. It is found that all measures
considered herein are inequitable in that they induce under- or overforecasting. One condition under which such
bias is not induced (for some of the measures) is when the underlying class-conditional distributions are Gaussian
(normal) and equivariant.

1. Introduction

Forecast quality has been extensively examined by
Murphy (1991, 1993). One lesson that emerges from
those considerations is that forecast quality, or the per-
formance of a forecaster or of an algorithm, is an in-
herently multifaceted quantity. In other words, although
it is quite common to express performance in terms of
a single, scalar (i.e., one-dimensional) quantity (e.g.,
fraction correct, the critical success index, etc.), such
considerations are apt to be incomplete. A complete and
faithful analysis must consider all the various compo-
nents of performance quality.

As argued by Murphy and Winkler (1987), one quan-
tity that encapsulates all the components of performance
is the joint probability of observations, x, and forecasts,
f. When x and f are discrete, the joint probability can
be represented as a contingency table. For example, if
the observations consist of the existence or the non-
existence of tornados, then the number of rows in the
contingency table is 2. Additionally, if the forecasts are
probabilities given in intervals of 10%, then the con-
tingency table is 2 3 11, and if the forecasts are binary
(yes/no), then it is 2 3 2. In the present article, only
the 2 3 2 case is considered. In other words, both the
observations and the forecasts are assumed to be binary.

Not withstanding the multidimensionality of perfor-
mance, there exist situations in which this multidimen-
sionality must be distilled to a single, scalar quantity. For
example, in deciding the winner of a forecasting contest,
this multidimensionality allows for multiple first-place
winners; different first-place winners may excel one an-
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other in terms of different components of performance.
As a result, even in probabilistic forecasting contests,
performance is gauged in terms of some scalar quantity
such as the ranked probability score (Hamill and Wilks
1995). Of course, it is possible that a unique candidate
may outperform all of the other candidates in terms of
all the different components of performance, or that the
particular component of performance that is of interest
is unambiguously self-evident. However, neither situation
is guaranteed, or even likely.

For this and other reasons, scalar measures of perfor-
mance are in common use. A number of these measures
are derived from the contingency table itself, but at least
two measures of performance are required to account for
the two degrees of freedom present in the (2 3 2) con-
tingency table (see next section). As mentioned above,
however, frequently it is impossible to optimize both mea-
sures simultaneously. For example, it is known that the
critical success index is ‘‘inequitable’’ (Gandin and Mur-
phy 1992) in that it can induce ‘‘hedging.’’ Another way
of saying this is that the critical success index and bias
cannot be optimized simultaneously, that is, that the max-
imum of the critical success index does not correspond to
unbiased (bias 5 1) forecasts. It has also been argued
(Doswell et al. 1990) that the true skill score can induce
similar hedging in rare-event situations while Heidke’s
skill score does not. Indeed, R. L. Vislocky (1997, personal
communication) has claimed that ‘‘all’’ measures are gen-
erally inequitable. In this article, 14 scalar measures based
on the 2 3 2 contingency table will be examined in the
rare-event situation. It will be shown that forecasts that
optimize any single one of these measures are generally
biased in a rare-event situation and can, therefore, be said
to induce hedging or be inequitable. Although the concept
of hedging, as put forth by Murphy and Epstein (1967),
relates to probabilistic forecasts and scoring rules, these



754 VOLUME 13W E A T H E R A N D F O R E C A S T I N G

measures do induce under- or overforecasting in a rare-
event situation.

2. Measures of performance quality

The question as to what exactly is a proper measure
of performance quality has been addressed extensively

in the past (Brooks and Doswell 1996; Gandin and Mur-
phy 1992; Murphy 1993, 1996; Murphy and Winkler
1992; Murphy and Winkler 1987). In this section, 14
measures of categorical forecast performance will be
defined. The measures are derived from the contingency
table (otherwise known as the confusion matrix), or in
short the C table:

a b # of 0’s predicted as 0 # of 0’s predicted as 1 . false alarms
C table 5 5 5 .1 2 1 2 1 2c d # of 1’s predicted as 0 # of 1’s predicted as 1 misses hits

The total number of nonevents (0’s) is given by N0 5
a 1 b, that of events (1’s) is N1 5 c 1 d, and the total
sample size is N 5 N0 1 N1. Note that this table has
only two degrees of freedom; a general 2 3 2 matrix
has four degrees of freedom, but with the two constraints
N0 5 a 1 b and N1 5 c 1 d, that number is reduced
to 2. Two common quantities, probability of detection
(POD) and false alarm ratio (FAR), are easily calculated
as POD 5 d/(c 1 d) and FAR5b/(b 1 d). It is, however,
convenient to write all of the measures in terms of the
two error rates—the rate at which 0’s are misclassified
as 1’s, c01 5 b/N0, and the rate at which 1’s are mis-
classified as 0’s, c10 5 c/N1. Therefore,

c01POD 5 1 2 c , FAR 5 ,10 c 1 N (1 2 c )01 10 10

where N10 is simply the ratio of the sample sizes, N10

5 N1/N0.
Specifically, the measures analyzed are1

1) product of POD and (12FAR),

2(1 2 c )10PRD 5 POD 3 (1 2 FAR) 5 ;
1 2 c 1 N c10 01 01

2) average of POD and (12FAR),

AVG 5 [POD 1 (1 2 FAR)]/2

1 1
5 (1 2 c ) 1 1 ;10 1 22 1 2 c 1 N c10 01 01

3) fraction correct,

a 1 d 1 2 c 1 2 c01 10FRC 5 5 1 ;
a 1 b 1 c 1 d 1 1 N 1 1 N10 01

4) efficiency,

1 None of the measures considered here allows for assigning spe-
cific costs of misclassification; for that purpose one must construct
a scoring matrix reflecting the desired costs of misclassification.

a d
EFF 5 3 5 (1 2 c )(1 2 c );01 10a 1 b c 1 d

5) critical success index,

d 1 2 c10CSI 5 5 ;
b 1 c 1 d 1 1 N c01 01

6) true skill score,

det C
TSS 5 5 1 2 c 2 c ;01 10N N0 1

7) Heidke’s skill score,

2 detC
HSS 5

N (b 1 d) 1 N (a 1 c)0 1

2(1 2 c 2 c )01 105 ;
2 2 (1 2 N )c 2 (1 2 N )c01 01 10 10

8) Gilbert’s skill score,

detC
GSS 5

detC 1 N(b 1 c)

1 2 c 2 c01 105 ;
1 1 N c 1 N c01 01 10 10

9) Clayton’s skill score,

detC
CSS 5

(a 1 c)(b 1 d)

1 2 c 2 c01 105 ;
(1 2 c 1 N c )(1 2 c 2 N c )01 10 10 10 01 01

10) Doolittle’s skill score,

2(detC)
DSS 5

N N (a 1 c)(b 1 d)0 1

2(1 2 c 2 c )01 105 ;
(1 2 c 2 N c )(1 2 c 1 N c )01 10 10 10 01 01

11) discrimination measure,
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21
DIS 5 1 21 1 N10

2(1 2 c ) N (1 2 C )10 10 103 1 1 1 11 2[ ]1 1 N c01 01

21
1 1 21 1 N01

2(1 2 c ) N (1 2 c )01 01 013 1 1 1 1 ,1 2[ ]1 1 N c10 10

21
DIS 5 1 21 1 N10

2c c10 103 1 1 1 11 2[ 1 1 N N (1 2 c )01 01 01

21
1 1 21 1 N01

2c c01 013 1 1 1 1 ,1 2[ ]1 1 N N (1 2 c )10 10 10

for ad 2 bc ; (1 2 c01 2 c10) $ 0, and ad 2 bc , 0,
respectively. We also define two new measures—a pair
of angles u and f:
12)

1 2(ab 1 cd)
21u 5 tan

2 2 2 2) )2 d 1 b 2 a 2 c

21 2[(1 2 c )c 1 N c (1 2 c )]10 10 01 01 01215 tan ,
2) )2 (1 2 2c ) 2 N (1 2 2c )10 01 01

13)

1 2(ac 1 bd)
21f 5 tan

2 2 2 2) )2 d 1 c 2 a 2 b

1 2(c 1 c )01 10215 tan .
2 2) )2 N (1 2 2c 1 2c ) 2 N (1 2 2c 1 2C )10 10 10 01 01 01

Finally, the bias of the forecasts will be gauged with
14) bias,

b 1 d
Bias 5 5 1 2 c 1 N c .10 01 01c 1 d

In the above equations N01 stands for N0/N1. Unlike the
other measures, u and f are measures of ‘‘error’’ in that
lower values correspond to better performance. Al-
though they, too, can be transformed into measures of
‘‘success,’’ as shown below, that would obfuscate their
geometrical interpretation.

The quantities POD 3 (1 2 FAR) and [POD 1 (1

2 FAR)]/2 are natural choices to maximize, since op-
timal performance would correspond to the maximum
of both POD and (1 2 FAR); both measures have been
considered by Donaldson et al. (1975). The measure
FRC is equal to Finley’s measure (Murphy 1993, 1996).
It is the measure of accuracy on which all of the skill
scores are based, and it is the weighted average of the
two group-specific fractions correct, a/N0, and d/N1. Ef-
ficiency is simply the product of the two group-specific
fractions correct. This is a commonly used quantity in
high energy detector physics. The unweighted average
of the two is related to TSS: (a/N0 1 d/N1)/2 5 (TSS
1 1)/2. CSI (Donaldson et al. 1975) is an example of
a measure with a long history and one that has been
rediscovered many times (Murphy 1996). TSS and HSS
are both derived from considerations of the marginal
probabilities, and they both take into account the non-
skill-related contributions (e.g., chance, bias, etc.) to the
C table. The technical difference between the two is in
the way they are normalized (Doswell et al. 1990): TSS
5 Tr(C 2 E)/Tr(C* 2 E*), while HSS 5 Tr(C 2 E)/
Tr(C* 2 E), where E is the (biased) expected matrix
based on C:

1 (a 1 b)(a 1 c) (a 1 b)(b 1 d)
E 5 .[ ]N (c 1 d)(a 1 c) (c 1 d)(b 1 d)

This matrix is the C table that one would obtain in the
absence of any skill, that is, with random guessing; the
proof can be found in many statistics texts. Here, E* is
the (unbiased) expected matrix based on a hypothetical
diagonal C-table, C*, representing perfect accuracy:

a 1 b 0
C* 5 ,1 20 c 1 d

21 (a 1 b) (a 1 b)(c 1 d)
E* 5 .

21 2N (a 1 b)(c 1 d) (c 1 d)

The three measures GSS, CSS, and DSS complete the
list of measures compiled by Murphy (1996). Note that
many of these measures are in fact related; for example,
DSS 5 TSS 3 CSS.

Murphy et al. (1989) define a measure of discrimi-
nation, DIS, derived from the conditional probability
p( f | x), that is, the posterior probability of a forecast f
given an observation x. Specializing their formula for
DIS to f 5 0, 1 results in the expressions for DIS, given
above.

The quantities u and f are measures that to our
knowledge have not been considered elsewhere. Their
origins are as follows: If the matrix C is symmetric, then
it can be diagonalized by a rotation (similarity trans-
formation) of the basis axes:

L 5 TuC ,21Tu

where L would be the diagonal matrix of the eigen-
values and T is an orthogonal matrix written in terms
of a single rotation parameter u,
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cosu 2sinu
T 5 .1 2sinu cosu

Clearly, a diagonal C table would represent perfect per-
formance, and as a result the angle of rotation could
serve as a measure of performance. However, for a non-
symmetric matrix (as is the case with C tables if bias
± 1) it is not possible to diagonalize with a single ro-
tation, but one can show that a transformation of the
type

L 5 TuC 21Tf

can render L diagonal, where Tu and Tf are rotation
matrices but with different angles u and f.2 In the non-
symmetric case, therefore, it requires a pair of quantities
to provide a measure of performance, namely u and f.
This is again a consequence of the multidimensionality
of forecast quality (or the C table). It is interesting that
in an (M 3 M) C table the number of rotation angles
necessary for diagonalization [i.e., 2 3 M(M 2 1)/2,
the factor of 2 reflecting the nonsymmetric nature of the
C table] is exactly equal to the number of independent
degrees of freedom after the M ‘‘climatological con-
straints’’ (e.g., N0 5 a 1 b, N1 5 c 1 d, for M 5 2)
have been taken into account, that is, M 2 2 M. However,
it must be noted that these rotations cannot produce a
diagonal matrix with the proper climatological frequen-
cy.

Finally, as for bias (Wilks 1995), if bias 5 1, then
the forecasts are unbiased. If bias , 1, then events are
being underforecasted, otherwise overforecasting is oc-
curring.3 Note that bias 5 1 implies that the C table is
symmetric, that is, b 5 c. Also note that if b 5 c, then
u 5 f. In other words, the difference between the two
measures u and f is also a measure of bias.

3. Limiting cases

It is evident from their defining equations that PRD,
AVG, and CSI are independent of a. This a indepen-
dence does not imply that these measures fail to incor-
porate the correct classification of nonevents. The sim-
plest way to see this is to note that one may always
substitute b 5 N0 2 a in the defining equations for the
measures. Since N0 is a fixed number, then these mea-
sures do effectively depend on the element a. In this

2 In performing a pair of transformations of this type the ortho-
normality of the axes is lost, weakening the geometrical significance
of the angles of rotation. However, this is not a problem since the C
table is only a table and not a true matrix, that is, it does not transform
as a rank (1, 1) tensor on V J V*, where V is a vector space and V*
its dual.

3 The author is indebted to R. L. Vislocky for introducing this
notion of bias.

respect, they are perfectly well-behaved measures in the
rare-event situation.4

It is important to properly define what is meant by a
‘‘rare-event situation.’’ In a rare-event situation, the C
table may look like

9990 10
.1 240 60

First, note that a k b and c ; d, that is, a is much
larger than b, while c is of the same order as d. For this
reason, Doswell et al. (1990) consider the rare-event
situation to be characterized by the inequality a k b.
Also note that N0 5 a 1 b 5 10 000 and N1 5 c 1 d
5 100, and thus N0 k N1. This inequality is simply a
reflection of nature and its preferred proportion of non-
events to events. It is easy to show that

(a k b) and (c ; d) → (N0 k N1).

The converse is not true and so the inequality N0 k N1

is ‘‘weaker’’ than (a k b, c ; d). Although both in-
equalities are useful definitions of a rare-event situation,
only N0 k N1 is an attribute of the ‘‘situation’’; the
other is a characteristic of the classifier itself. For ex-
ample, even when N0 5 N1, overforecasting alone can
yield a C table with a k b. To preserve the generality
of the analysis, only N0 k N1 will be considered in this
article. The question then arises as to the effect this
inequality may have on the various measures.

The examination of the measures of performance in
the rare-event situation is fruitful in general because
even though the extreme inequality may not be realized
in a given situation, the existence of any inadequacy in
such extremely rare event limits may hint at the exis-
tence of an inadequacy (albeit a weaker one) even for
situations where events are not extremely rare. In other
words, in order for the pathologies to be of serious
consequence and concern it is not necessary to have N0

k N1; even N0 . N1 (i.e., a common condition) may
be sufficient to raise concern.

One aim of this study is to examine whether or not
different measures of performance induce under- or ov-
erforecasting in rare-event situations. For that reason,
the role played by bias is somewhat different from that
of the other measures. To see how bias enters the anal-
ysis, it is sufficient to consider the way in which one
arrives at a C table. Typically, the forecaster makes a
decision based on some quantity, for example, dewpoint,
gate-to-gate velocity difference, probability, or a re-
gression function representing many variables, by in-
troducing a decision threshold. If the measure of choice
is inequitable (Gandin and Murphy 1992), then the fore-

4 In fact, since the C table has only two degrees of freedom, it is
sufficient for a measure to depend on only two elements of the C
table, as long as one of them is either a or b, and the other is either
c or d.
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TABLE 1. The values of the measures at four limiting cases: perfect prediction of both events and nonevents (I), constant forecasts of
events (II) and nonevents (III), complete misclassification of both events and nonevents (IV), and classification by random guessing (V).
The C-tables in these four cases are, respectively, Here, N0 and N1 are the number of nonevents andN 0 0 N N 0 0 N0 0 0 0( ), ( ), ( ), and ( ).0 N 0 N N 0 N 01 1 1 1
events, respectively. Also, N 5 N0 1 N1, N01 5 N0 /N1, and N10 5 N1/N0 .

I II III IV V

PRD 1
N1

N
0 0

1 2 c 1 N c10 01 01

21 1 N01

AVG 1
1 N11 11 22 N

1
0,

2
0

2 2 c 1 N c10 01 01

2(1 1 N )01

FRC 1
N1

N

N0

N
0

N (1 1 N ) 1 (1 2 N )(1 2 c 1 N c )01 01 01 10 01 01

2(1 1 N )01

EFF 1 0 0 0
N (1 2 c 1 c )(1 2 c 1 N c )01 01 10 10 01 01

2(1 1 N )01

CSI 1
N1

N
0 0

1 2 c 1 N10 01

1 1 N (2 2 c 1 N c )01 10 01 01

TSS 1 0 0 21 0

HSS 1 0 0
22N01

21 1 N01

0

GSS 1 0 0
2N01

21 1 N 1 N01 01

0

CSS 1
N N0 12 ,
N N

N N0 1, 2
N N

21 0

DSS 1 0 0 1 0

DIS ` 1 1 ` 1

u 0 0 0 p /2
1 2(1 2 c 1 N c )(c 1 N (1 2 c ))10 01 01 10 01 0121tan [ ]2 (1 1 N )(1 2 N 2 2c 1 2N c )01 01 10 01 01

f 0
1 2N0121tan

2[ ]2 1 2 (N )01

1 2N0121tan
2[ ]2 1 2 (N )01

0
1 2N0121tan

2[ ]2 1 2 N01

Bias 0
N01 1
N1

0
N0

N1

1 2 c 1 N c10 01 01

caster may be encouraged to lower or raise the decision
threshold, in order to optimize that measure. However,
there is no guarantee that the optimum of the measure
corresponds to unbiased forecasts. In other words, in
attempting to optimize a measure the forecaster may be
unintentionally under- or overforecasting.

Table 1 lists the values of the measures in several
limits.5 The C table of case I represents perfect accuracy,
while that of case IV reflects a complete lack of ac-
curacy. At the same time, cases I and IV are equally
and completely discriminatory. Cases II and III repre-

5 To obtain the values of the measures in these limits, one must
first introduce small parameters, e, l, in place of the zeros in the C
table, for example, ( ) in II. After the measures are calculated,N 2 e e0

N 2 l l1

then one may take the e, l → 0 limit. However, the limits of AVG,
and CSS, involve the ratio (l/e), leading to ambiguous results. Later
in this article, these ambiguities will be shown to be related to the
relative size of the standard deviations of the two classes.

sent constant forecasts of all observations as events, or
as nonevents, respectively. In other words, case II cor-
responds to very low decision thresholds, that is, ov-
erforecasting, and case III represents very high decision
thresholds, that is, underforecasting. Another common
standard of reference is the expected matrix E (previous
section), and the values of the measures in this no-skill
limit are given in column V.

Gandin and Murphy (1992) first note that CSI ap-
proaches N1/N0 in the limit II—a value larger than the
corresponding limits in III and V—and then argue that
CSI is inequitable in that a forecaster may increase his/
her CSI by simply underforecasting. By the same token,
they argue that any measure whose values in columns
II, III, and V are unequal may encourage under- or ov-
erforecasting and is therefore inequitable.

However, this does not preclude the remaining mea-
sures from inducing biased forecasts as well. This can
be seen by noting that even for a measure with vanishing
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FIG. 1. Two Gaussian (normal) distributions
with unequal variances.

limits in II, III, and IV, it is possible that the value of
the threshold that optimizes such a measure corresponds
to a C table whose bias is not equal to 1. As such, this
measure is inequitable because in the process of opti-
mizing it one will be biasing the forecasts.6

To examine the measures for any such inequitability,
we expose the threshold dependence of the measures.
That dependence is entirely contained to the quantities
c01 and c10, and so they can be written as c01(t) and
c10(t), with t being the decision threshold. Then, the
optima of the measures can be found by differentiating
them with respect to t and setting the results equal to
zero.

4. Some exact results

From column III of Table 1 it is evident that FRC
approaches N0/N, which in the rare-event situation is
approximately 1. But this is the value of FRC in the
perfect skill limit (column I). Therefore, by simply un-
derforecasting one may increase FRC all the way up to
its maximum value. Similarly, CSS may approach N0/
N (columns II and III) and can, therefore, suffer the
same fate as FRC; the precise condition under which
CSS approaches N0/N will be given in the next section.
To a lesser degree AVG has the same problem, since
by simply underforecasting it approaches 0.5 (column
III) suggesting nontrivial skill when in fact there is no
skill at all. Both u and f have values in columns II and
III that are either zero or approach 0 in the rare-event
situation, but zero is also their perfect-accuracy value
(column I), and so they cannot distinguish between un-
der-, over-, or perfect forecasts. As such, AVG, FRC,
CSS, u, and f are problematic measures.

As mentioned previously, the value of the decision
threshold at which a given measure is optimized is an
important quantity, because if the bias at that critical
threshold is not equal to one, then the use of such a
measure can induce under- or overforecasting. For the
sake of brevity the details of the calculation will not be
presented here, but it is easy (though lengthy) to show
that the derivatives of the measures CSI, HSS, and GSS
are equal in the rare-event situation. Therefore, they can
be optimized simultaneously at a unique threshold.
However, it is not easy to compute the value of bias at
this threshold. To that end, an approximation must be
made.

5. Gaussian approximation

One may assume that the underlying distributions of
the events and nonevents are gaussian (normal) with
means m0, m1 and standard deviations s0, s1, respec-

6 The author is indebted to one of the reviewers of this article for
pointing out this extremely important and subtle point.

tively (Fig. 1). Although this assumption may not be
generally valid, it is often a fair approximation and it
can aid in capturing some general properties of the mea-
sures. It is then straightforward to show (Marzban 1998)

1 1
c 5 [1 2 erf(t )], and c 5 [1 1 erf(t )],01 0 10 12 2

where erf(x) is the Gaussian error function and ti (i 5
0, 1) are defined as

t 2 mit [ ,i Ï2 si

where t is the decision threshold.
TSS and FRC are special in that their critical thresh-

olds can be computed, exactly, by noting

d 2 22terf(t) 5 exp ,
dt Ïp

which follows from the definition of the Gaussian error
function

t2 22xerf(t) 5 exp dx.EÏp 0

Then, one can prove that the critical threshold, tc, max-
imizing FRC satisfies the quadratic equation

2 21 1 m m m m1 0 1 022 t 1 2 2 t 2 2c c2 2 2 2 2 21 2 1 2 1 2s s s s s s0 1 1 0 1 0

s N0 01 2 log 2 2 log 5 0.1 2 1 2s N1 1

It can also be shown that the relevant equation for TSS
is given by the same quadratic but without the last term
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FIG. 2. The measures as a function of the decision threshold in a Gaussian (normal),
equivariant (s0 5 s1) approximation. The measure DIS is plotted on a log scale to allow
for complete presentation. The vertical line represents the threshold at which bias is equal
to 1.
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FIG. 3. The measures as a function of the decision threshold in a Gaussian (normal)
approximation with s0 , s1. DIS is plotted on a log scale.
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FIG. 4. The measures as a function of the decision threshold in a Gaussian (normal)
approximation with s0 . s1. DIS is plotted on a log scale.
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(involving N0, N1). Note that for the general case of
unequal variances, there are in fact two thresholds at
which FRC and TSS are maximized, although one of
them occurs at very large values of the threshold. This
is a consequence of having two crossing points between
the two distributions (Fig. 1). The special case of equi-
variant distributions, s0 5 s1 5 s, yields the intuitive
results

2m 1 m s N1 0 0t 5 1 log , for FRC,c 1 2 1 22 m 2 m N1 0 1

m 1 m1 0t 5c 1 22 for TSS.

In a rare-event situation the second term in the tc of
FRC dominates the first term thereby tending to in-
crease, or decrease, tc without bound depending on the
relative size of m1 and m0. Therefore, FRC induces un-
derforecasting if m1 . m0, and overforecasting other-
wise. Evaluating the bias at tc 5 (m0 1 m1)/2 yields a
positive quantity (if N0 . N1), and therefore, TSS al-
ways induces overforecasting in a rare-event situation.

The remaining measures are difficult to address an-
alytically, but they can be handled graphically. Figures
2, 3, and 4 display all of the measures when s0 5 s1,
s0 , s1, and s0 . s1, respectively. Without loss of
generality the means have been set at m0 5 21 and m
5 1, and the sample size ratio has been set at N0/N1 5
10. For more extreme rare-event situations, for example,
N0/N1 ; 50, 100, . . . , the behavior of the curves is
mostly unchanged, and what change that does occur can
be anticipated from the limiting values in Table 1. For
example, FRC has a ‘‘slight’’ peak in Figs. 1 and 2;
these peaks disappear as N0/N1 increases because ac-
cording to Table 1 the value of FRC for large values of
the threshold (i.e., extreme right-hand side of the
graphs) approaches 1.

If the variances are equal (Fig. 2), then it can be seen
that AVG, PRD, CSI, HSS, GSS, and DSS reach their
maxima at the threshold for which bias 5 1. Therefore,
these measures are equitable in the equivariant case. By
contrast, the optima of the remaining measures occur
far from the bias 5 1 line; EFF, TSS, DIS, and f induce
overforecasting (bias . 1), FRC and CSS induce un-
derforecasting (bias , 1), while u is capable of inducing
either.

For s0 ± s1, all measures are inequitable. If s0 ,
s1 (Fig. 3), then EFF, TSS, and f, induce overfore-
casting, while PRD, AVG, FRC, CSI, HSS, GSS, DSS,
and CSS all induce underforecasting. DIS and u can
induce either. If s0 . s1 (Fig. 4), all measures induce
overforecasting, except for FRC, which induces under-
forecasting, and DIS and u, which can induce either.
Note that the results of the previous sections can be seen
in these figures. For example, the values of the measures
in columns II and III of Table 1 correspond to the values
of the measures in the extreme left- and extreme right-

hand side of the figures. Additionally, CSI, HSS, and
GSS all have the same critical threshold, as anticipated.
Also, one of the crossing points at which u 5 f co-
incides with the bias 5 1 line. This is a consequence
of the comment made at the end of section 2.

It is worth emphasizing that the equality or the in-
equality of the variances are statistical statements. In
other words, in a practical situation if the two variances
are statistically equivalent (to some level of signifi-
cance), then it behooves one to assume equivariance of
the distributions. In that case, as shown above, PRD,
AVG, CSI, HSS, GSS, and DSS are all equitable mea-
sures in a statistical sense.

6. Conclusions

A number of scalar measures of performance quality
are examined in the rare-event situation. It is shown that
AVG, FRC, CSS, u, and f are ill behaved in that their
perfect-performance value coincides with their constant
forecast value. Additionally, it is found that CSI, HSS,
and GSS are optimized simultaneously at the same value
of the decision threshold. It is further shown that in a
Gaussian (normal) approximation if the variances of the
distributions are statistically distinct, then all of the mea-
sures considered herein are inequitable in that they in-
duce under- or overforecasting in rare-event situations.
If the Gaussian distributions are statistically equivariant,
then such bias is precluded for some of the measures;
these measures are PRD, AVG, CSI, HSS, GSS, and
DSS.
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